

Thermal Threat Detector Critical Design Review

 $\bullet \bullet \bullet$

Photo Science Capstone 2023-24 April 2nd, 2024

Overview

Design and develop a thermal imaging system that can detect a suspected threat in a room with no lighting.
The device must be able to enter a room and return images to the operator.

Size: The device should be around 14 in (d) x 4 in (h).

Sound: The device must be able to operate with minimal sound output.

Mobility: The system must be on the ground.

Operation: The device must be operative in manual mode, but if possible, it should be able to switch between manual and autonomous modes.

Power: The device should last at least 1 hour on a single charge.

Camera: The imaging system should have multiple thermal cameras able to detect a range of human body temperatures.

Field of View: The imaging system should achieve 180 degrees. **Users View:** Wireless live view, from a safe distance. **GUI:** The GUI must have a button to allow the user to capture a picture. **Resolution:** The system should be able to resolve a human being. **Lens:** The lens should be a fixed focus lens. **Budget:** The budget is \$3,000. **Completion date:** The completion date is April 27, 2024 at Imagine RIT.

Where we left off

- Connecting to the Camera
- Programming GUI and Object Detection
- Designing camera mount and printing prototypes

Profile Photo	Start New Session	,	LiDAR Map / Motor Control
Name	Recent Sessions		View All
Email			

What we are working on

- Fine tuning camera mount
- Camera Calibration
- Image Stitching
- Vehicle control
- Finalizing GUI

Work Breakdown Structure

Hardware Updates

Work Breakdown Structure: Vehicle

Vehicle

The vehicle chosen was the JetAcker with Jetson Nano. Included features:

- LIDAR Mapping

- Multiple communication Methods (USB/ WiFi/ Ethernet)

- Compatible with python programming language

A series of test have been run:

- Sound output
- Manual control
- Trained Lidar
- Battery Testing

Work Breakdown Structure: Vision System

Pugh Analysis - Camera

				Ca				
Baseline	Criteria	Weight	Lepton 3.1R	FLIR K1	FLIR C3-X	SN-TPC4201VT-F (III)	Klein Tools Pro	HIK Vision
\$2000 total	Price	5	Better 🔻	Same 🔻	Worse 🔻	Worse 🔻	Same 🔻	Worse 🔻
160x120 px	Resolution	5	Same 🔻	Same 🔻	Worse 🔻	Better 💌	Better 💌	Same 🔻
97.6-99.6	Temperature Range	5	Better 💌	Better 💌	Better 💌	Better 💌	Better 💌	Better 💌
50-60	Field of View	5	Better 💌	Same 🔻	Same 🔻	Worse 🔻	Same 🔻	Worse 🔻
1 hour	Power	3	Better 💌	Better 💌	Better 🔻	Worse 🔻	Worse 🔻	Worse 💌
Per user manual	Easy-to-setup	1	Worse 💌	Better 🔻	Same 🔻	Worse 🔻	Same 🔻	Same 🔻
Yes/No	Rotate	2	Worse 💌	Worse 🔻	Worse 🔻	Worse 🔻	Worse 🔻	Better 🔻
Per website and description	Durability	1	Same 🔻	Better 🔻	Better 🔻	Same 🔻	Better 🔻	Same 🔻
Based on year released	Reasources/online info	2	Worse 💌	Same 🔻	Same 🔻	Same 🔻	Same 🔻	Same 🔻
Would it be easy to create a								
mount	Camera size/shape	3	Same 🔻	Worse 💌	Better 🔻	Better 🔻	Better 🔻	Same 🔻
Yes/No	Stream on it's own	2	Worse 💌	Worse 💌	Worse 💌	Better 🔹	Worse 🔻	Worse 💌
	Better		4	4	4	4	4	2
	Same		3	4	3	2	4	5
	Worse		4	3	4	5	3	4
	Weighted Better		18	10	12	15	14	7
	Weighted Same		0	0	0	0	0	0
	Weighted Worse		-7	-7	-14	-16	-7	-15
	Overall Score		11	3	-2	-1	7	-8
	Best Decision	Lepton 3.1R						

Cameras - What we are using

- Lepton 3.1R

- 95* HFOV & 71* VFOV allowing for 190* total HFOV and 156* VFOV
- 160x120px frame size
- \$142 per camera x 3 cameras
 - \$426 total
 - Price of all three Lepton cameras is less than the price of one camera for any of the other brands

Work Breakdown Structure: Camera Mount

Initial Camera Mount Design

-Each Lepton Camera had: -119 degree diagonal -95 degree horizontal - 71 degree vertical

-The mount was designed to achieve a 180* horizontal field of view and a 156* vertical field of view

Camera Mount Testing

-When testing FOV, placements were marked on the floor where the edge of the frame was for each camera.

-The angle was measured from the outside marks

-Camera mount is being finalized with adjustments calculated from testing.

Current Mount FOV and Overlap

-Due to complications with original image stitching, the overlap on our reprint was overcompensated.

-With our new mount, the angle degree of outside cameras will be increased, decreasing overlap and focusing on obtaining our 180* FOV

Motion Control

Lidar mapping

- Conducted SLAM mapping tests within the Gannett studios. Able to create the map with both manual and autonomous control
- Allowed for autonomous movement, and obstacle avoidance.
- Currently implementing vehicle control into the GUI

Microprocessor - Jetson Nano

Complimentary SDK:

- JetPack
- CUDA Toolkit
- cuDNN

Seamlessly integrates with frameworks for computer vision and robotics development like OpenCV and ROS

Because of the processing power, it gives developers a lot of headroom to design and debug while still aligning with the budget.

1

Charging

Initial Testing: 4hr Battery Life

- Ordered two additional batteries to change while the vehicle is operating so the system can last for all of Imagine RIT (8hrs)
- Lastly have to solder the new wire connection and mount the new battery to the vehicle.

Software Updates

Work Breakdown Structure: GUI

GUI

- Python script for most functions are completed
- Utilize virtual database for user logins
- Camera's input for live feed
 Object Detection
- Captured image saved in the Gallery
 - Image Stitching

Working on: syncing 3 cameras together

GUI

- Using HiWonder to connect with the vehicle
 - Bash script created to start GUI when vehicle turns on
- Vehicle Control
 - Implemented in the GUI
 - User can use keyboard (w, a, s, and d) to control

#!/bin/bash

Open new terminal - enable service
terminator -x bash -c './enable_service.sh'

Wait for a bit to ensure the first command starts properly (optional, adjust as needed) sleep 2

Open new terminal - start gui terminator -x bash -c './start_gui.sh'

Open new terminal - vehicle control terminator -x bash -c './start_mapping.sh'

Open new terminal - save map terminator -x bash -c './save_map.sh'

> Moving around: w a s d CTRL-C to quit

> > OK

Work Breakdown Structure: Threat Detection

Object Detection - Training

Pretrained YOLO Model

Load pre-trained dataset (cfg, weights, class names)

Configure Training Parameters (Learning rate, epochs, batch size, loss function)

Train the model

Model Validation and Testing

Monitor Training Metrics

Set Training Parameters

11

Object Detection - Results

Used Pre-trained YOLOv3 Model, trained with Flir ADASv2 Dataset

- Capable of detecting people and 14 other distinct objects
- Struggles to resolve people when they are far away from the camera
- Need to retest module with updated calibration

Benefits of Calibration

- To know what colors correspond to what temperature in a captured image after applying the color palette
- To know the pixel's response at each temperature
- This can help with image stitching as the three cameras will be able to display the same colors for the same temperatures

Calibration Process

- When you take images pointed at the blackbody radiator, you will know the pixel counts that correspond to that certain temperature (these pixel counts will be different for each camera because they are not calibrated the same)
- Take 10 images and combine them to reduce noise to get "clean" images to work with

Calibration Results

- Gathered data from
 blackbody radiator, taking
 10 images at
 - 10 20 30 40 Celcius
- Step 1: Program successfully combined 10 tiff images into one tiff for each camera and temperature

Calibration - Step 1 Results

Calibration Final Steps

- Extract pixel values
- Calibrate the pixel values to the temperature we said it was

- Create a linear regression model showing what pixel values correspond to what temperatures
- Apply gain and offset to uncalibrated images
- Display a calibrated image

Calibration Issues

- Program is not handling tiff files (resizing and reshaping issue with newly collected data)

- Continuing troubleshooting to fix code

Users > gabriellafatigati > Desktop > 1_PS Capstone > PhotoScienceCal > 幸 linearRegress2 >
<pre>88 81 result = cv2.imwrite(os.path.join(resultsDir, 'slope.tif'), slope) 82 result = cv2.imwrite(os.path.join(resultsDir, 'yIntercept.tif'), yIntercept) 83 result = cv2.imwrite(os.path.join(resultsDir, 'rValue.tif'), rValue) 84 if result: 85 print('Files saved successfully.') 86 else: 87 print('Error in saving files.') 88 99 90</pre>
<pre>ifname == "main": maxTemp = 50 maxTemp = 50 minTemp = 10 steps = 2 path = '/dirs/data/uas/uas_data/FLIR_calibration/Rec-000006/averagedImages/' path = '/dirs/data/uas/uas_data/FLIR_calibration/Rec-000006/statistics/' resultsDir = '/dirs/data/uas/uas_data/FLIR_calibration/Rec-000006/statistics/' temps = np.flip(np.arange(minTemp, maxTemp + 1, steps)) stiff_file = '/users/gabriellafatigati/Desktop/1_PS Capstone/PhotoScienceCal/Camera C/combined_C_40.tiff' slope, yIntercept, rValue = linearRegress(path, temps, resultsDir, tiff_file)</pre>
PROBLEMS 2 OUTPUT DEBUG CONSOLE TERMINAL PORTS
<pre>Shape of c before reshaping: (1,) Shape of c after reshaping: (1,) Shape of c after reshaping: (1,) Traceback (most recent call last): File "/Users/gabriellafatigati/Desktop/1_PS Capstone/PhotoScienceCal/linearRegress2", line 99, in <module> slope, yIntercept, rValue = linearRegress(path, temps, resultsDir, tiff_file) File "/Users/gabriellafatigati/Desktop/1_PS Capstone/PhotoScienceCal/linearRegress2", line 78, in linearRegress os.makedirs(resultsDir) File "/Library/Frameworks/Python.framework/Versions/3.10/lib/python3.10/os.py", line 215, in makedirs makedirs(head, exist_ok=exist_ok) [Previous line repeated 3 more times] File "/Library/Frameworks/Python.framework/Versions/3.10/lib/python3.10/os.py", line 225, in makedirs makedirs makedirs(head, exist_ok=exist_ok) </module></pre>
OSError: [Errno 30] Read-only file system: '/dirs'
[Done] exited with code=1 in 1.12 seconds

Calibration Success in Real Time

- When shooting live, we can apply the gain and offset to each pixel after capturing an image (which is calculated from the program)
- Then the same temperature on all three cameras will show as the same color
- Can check this by selecting the pixel values and comparing

Work Breakdown Structure: Image Stitching

Image Stitching - How it works

Program written in python to stitch images together:

- 1. Imports Images
- 2. Resizing Function

- Maximizes the size on each images (1000 pixels)

3. Stitch Image

Detects key points in images using SIFT (Scale-Invariant Feature Transform), to match key points.
Uses ratio test to determine if points are a good match.

4. Homography Estimation

- Estimates the homography matrix using RANSAC (Random Sample Consensus) algorithm. Uses Brute Force (BFMatcher) to align points. (This uses the data points to determine if there are any outliers).
- 5. Warping
 - Warping the second image to first using the matrix.
- 6. Blending
 - Seamless integration
- 7. Results/Output

Image Stitching -Where we left off

- An error indicated there was not enough matches present to stitch the images.
- To address this issue various image sets were tested.
 Including black and white images to see if the thermal was impacting the results.
- Same error remained determining more overlap was needed as well camera calibration.

Matched Features

Imaging Stitching - Moving forward

We know how to complete the images stitching using:

- The new RAW calibrated images.
- Completed matrix will be applied to every stitched image as cameras are in a fixed position.
- Once complete, can be implemented into the image processing pipeline.

Marketing Updates

Work Breakdown Structure: Camera Mount

Marketing/Imagine RIT Updates

- Poster: **Finished**
 - Headshots
 - QR Code
 - Image of Device
- Video: Filmed & Now Editing
 - Interviews
 - Overview of Class
 - B Roll
 - Demonstration
- Pamphlets and Brochures: In Process
 'What is Thermal Imaging?'
 'What is Capstone?'
 Hardware and Software Page

Marketing/Imagine RIT Updates

College of Art and Design Photographic Sciences Senior Capstone Class of 2024's Thermal Threat Detector

Project Information

Thermal imaging is an imaging techniques used in various ways such as serach and resue, inspections and in the medical field. Photo Science seniors were tasked to create an imaging device that can enter a room, detect a threat, capture and send thermal images back to the user in another room. We have done so by fusing an autonomous vehicle with three thermal cameras and programmed software that allows us to view 180 degrees inside the room.

ImagineRIT Booth

At our exhibit, you can see our thermal threat detector in action as we will be giving a live demonstration of the vehicle's capabilities. You can also view yourself through the lens of a thermal camera. Come talk to the Photo Science seniors of theclassof2024, and they may even let you take the wheel!

What is What is Thermal Imaging? Photographic Sciences?

Thermal imaging allows us to view infrared radiation emitted from an object or person, allowing the user to see past the visual spectrum* The camera converts infrared radiation data to create an image with color palettes epresenting temperature differences. This system is ideal for low-lit and dark

Photographic Sciences is a unique major to arts! It's a dynamic field with hands-on classes that explore the canture and collection of scientific data. This program combines photography with imaging science, information technology, computing, optics, and biomedical

Madeline Dowe, Leanna Herrick, Mia Tsilemos

Meet The Team Hardware:

Software: Sam Allen, Gabi Fatigati, Sue Kim, Xyron Neumann, Jared Redington, Annie Schmitt

With the Lenton 3.1R, thermal infrared lies

Our Project

Clearing a room can put an enforcement

team into a high-risk situation, being able to

enter and search for a potential threat with a

The Photographic Science seniors were tasked to create an imaging system that could enter a low-lit room, and canture thermal images. Once collected, the images are sent back to the operator in a safe adjacent room upon detection of a potential threat. This task

has been accomplished through the

three thermal cameras and the development of software enabling comprehensive 180-

integration of an autonomous vehicle with

Software

the software team was creating the GUI, graphic user interface. The GUI is the Python code for the system that is providing our visual for the data that is coming from the cameras, and it implements features such as: live view wehicle controls object detection and image stitching. With the GUI, the user engages with the components of the hardware team to capture a stitched 180degree thermal image. When the user logs in to their account, they will be presented with a live view of the three thermal cameras. From there, object detection will allow the user to better identify the threat. An image can then be captured and three individual images from each camera will be stitched into a single

thermal image.

Initial class photo taken with the Lepton 3.1R thermal camera.

This team was responsible for selecting, testing, and assembling all hardware aspects of this project. First, each component including the cameras, vehicle, and batteries were thoroughly researched for the most fitting products to be purchased for the system. The letAcker vehicle was the first

Hardware

main component that the team purchased followed by the Lepton 3.1R thermal cameras and PureThermal breakout boards. Later, additional batteries and materials including velcro for mounting, screws and chargers were chosen. Another big responsibility of the hardware

team was to design and print the mount which attaches the three thermal cameras to the vehicle. During this process, multiple prototypes were created and field of view testing was performed on the positioning of the cameras. The final product was printed to achieve the 180 degree field of view for the system. Autonomous movement testing. power supply testing, and camera data collection include some of the other

Photographic

Capstone 2024

Thermal Threat Detector

Sciences

PROJECT: Thermal Threat Detector

Photo Science 2024	e Caps	tone		Legen d :	On ti	rack	Low	Risk	Med	Risk	Lat	e/Behind	d	Unassign	ed																								
Project start date:	2/9/24				Februa	iry								Marc	h													April											
Scrolling increment:	5				14 15	16 17 18	8 19 20	21 22 23	3 24 25	26 27	28 29	1 2	34	5 6 7	8 9	10 11	12 13	14 15	16 17	18 19	20 21	22 23	24 25	26 27	22 2	9 30 3	1 1 2	3 4	4 5	67	8 9	10 11 :	12 13 1	15 16	17 18	19 20	21 22 3	23 24 25	26 27
Miles tone des cription	Category	Assigned to	Progres s	Start End Goal	w T	F S S	5 М Т	W T F	s s	мт	w T	FS	S M	т w т	F S	S M	τ w	T F	s s	мт	w T	F S	S M	T W	1	F S S	мт	w 1	T F	s s s	мт	w T	F S S	мт	wτ	F S	S M	т w т	F S
Hardware Team																																							
Print camera mount	Goal	Leanna	50%	2/1/24																																			
vehicle testing	Med Risk	.eanna, Maddie, and Mi	50%	2/2/24						_										-																			
Vehicle Control	High Risk	All software Team	30%	7/16/29																																			
Battery Life	Low Risk	.eanna, Maddie, and Mi	100%	1/30/24																																			
Train LiDAR	Med Risk	All software Team	10%	2/13/24																																			
oftware Team																																							
GUI Design	On Track	Annie and Sue	60%	1/1/24																											Щ								
Image Stitching	On Track	Sam	70%	1/3/24																																			
Camera Control	High Risk	Jared, Gabi, Xyron	33%	1/8/24																																			
Calibration	Med Risk	Gabi	70%	3/1/24																																			
Object Detection		Jared	50%																																				
Intergration	Milestone	All software Team	0%																																				
Finalize Marketing/Paper	Milestone	All software Team	0%																																				
Imagine RIT Poster		Gabi	SON.																																				
Video		NBD	0%																																				
Report		Sam And Annie	0%																																				
Pamphlet		Gabi	100%																																				
Technical Manual		NBD	0%																																				
Presentations																																							
Critical Design Review		Sam, Annie, and Jared		3/29/24																																			
Faculty Meeting		Maddie, Mia, and Sue		2/22/24																																			
Review		Leanna, Gabi, and Xyron		4/4/24																																			_
Imagine RIT				4/27/24																																			

Requirements Checklist

Requirement	Requirement Minimum	Thermal Threat Detector
Transportation	Manual	Manual
Power	1 hr	4 hr
Field of View	180*	~177*
Resolution	Capable of resolving a human	Capable of resolving a human in near distance
GUI	Allows user to capture image	Allows user to capture image

Remaining Work

- Retest image stitching and object detection modules (post calibration)
- Integrate three cameras with GUI
- Documentation
- User manual, technical manual, and research paper
- Marketing for Imagine RIT

Questions?